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A Mathematical Model
on the Efficiency of Regional Lockdown in Epidemic Dynamics
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1 Introduction

Lockdown is a strategy to prevent the spread of a
transmissible disease in a community. Especially in
countries and regions with poor medical infrastructure
and low emergency response capacity, the lockdown
will give the government and decision-makers sufficient
time to make plans to control the epidemic (Lytras and
Tsiodras, 2021). Although such a strict restriction has
played an important role in suppressing the disease
transmission among a community, economic develop-
ment must tend to face with great challenges, as seen
in the COVID-19 pandemic (Nicola et al., 2020). Fur-
thermore, Ganesan et al. (2021) mentioned that the
prolonged lockdown may cause some problems in the
physical and mental health. In this work, we consider
a simple mathematical model to theoretically discuss
the efficiency of the lockdown, for which we introduce
some different types with respect to which social ac-
tivity is restricted by it. The efficiency is compared
according to the endemic size, that is, the number of
infective individuals at the endemic equilibrium.

2 Assumptions

e The disease is not fatal;

e The community is composed of the regional area
(area 1) and the central area (area 2) with dif-
ferent qualities of the medical treatment for the
disease;

e Susceptible individuals of one area can temporar-
ily visit to the other area;

e Some infective individuals of the regional area
(area 1) can get the medical treatment at the cen-
tral area (area 2), for example, transported by
ambulance;

e Recovered individual becomes susceptible again;

e The population size is constant in each area ac-
cording to the epidemic dynamics.

3 Mathematical model

e Susceptibles (S;): healthy individuals in area i
who can be infected.

e Infectives (I;): individuals in area i who have
been infected and are able to transmit the dis-
ease.

e H;;: individuals belonging to area j who are in-
fective and under the medical treatment in area
1.

e N;: the population size in area i.
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where f; is the infection coefficient in area ¢, which
represents the effective infectivity of the transmissi-
ble disease. o;f; is the infection coefficient during the
temporary visit to area j, which is smaller than 3;
(0 < a; < 1). ~; is the treatment rate of the infective
in area ¢, and 6; is the recovery rate by the medical
treatment in area ¢. p is the proportion of infectives
belonging to the regional area, who get the medical
treatment in the central area (0 < p < 1). From the
assumption, it holds that Sy + I + Hy1 + Hoy = Ny,
So + Iy + Hos = Ny for any time ¢t with positive con-
stants N7 and Ns.



With the frequencies ¢; = S;/N;, ¥; = I;/N;,
Gj = H;j/Nj, the area-specified basic reproduction
numbers #Z; = [1N1/v1 for the regional area and
R§ = P2Na/~e for the central area, we can transform
the original system to
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where ¢1 + 1 + (11 + (21 =1, and ¢ + o + (22 = 1.

4 Different types of lockdown

&31 Q2 p
Weak lockdown type1 0 + +
Weak lockdown type 2 + 0 +
Strong lockdown 0 0 +
Complete lockdown 0 0 0
5 Disease-free equilibrium
Theorem 5.1. Disease-free equilibrium

Ey(1,0,0,0,1,0,0) is unstable if one of the fol-
lowing conditions is satisfied:

(i) By = 1;
(ii) %5 > 1;

(iii) <<%1’5 -1) (5’8

— 1) < a10.

6 Endemic equilibrium

Lemma 6.1. Endemic equilibrium
E* (qu? "/JT7 Ciklﬂ Cékh (b;v 77[];7 C;Q) uniquely exists lf
and only if one of the conditions (i), (it) and (iii) in
Theorem 5.1 is satisfied, independently of which type
of lockdown is adopted to the community.

Theorem 6.1. Under the strong lockdown with oy =
as = 0 or the complete lockdown with vy = ag = p =
0, the endemic equilibrium E* is globally asymptoti-
cally stable when it exists.

7 Endemic size

The proportion of population size in the regional area
and central area is defined by p := N;/Na. We de-
fine here the endemic size as the total number of in-
fective individuals in the community at the endemic
equilibrium E*. For our model, we define it by ¥* :=
(If + I3)/ (N1 + Na) = (put +15)/(1 + p). We com-
pare the endemic sizes under the complete, strong, and
weak (type 1 and 2) lockdowns, %, U* U*. and U7 ,,

and mathematically get the following result on their
order in the magnitude.

01 < 0 Ure > Wr> Ul
01 =02 Ure > U5 =02
01 > 04 Ure > Wr < Ul

8 Conclusion

e The strong lockdown is necessarily better than
the weak lockdown.

e When the hospitalization period in the central
area is longer than that in the regional area, the
strong lockdown is better than the complete
lockdown. Meanwhile, if the population size of
the regional area is sufficiently large, the
complete lockdown becomes the worst.

e When the hospitalization period in the central
area is sufficiently longer than that in the
regional area, the weak lockdown is better than
the complete lockdown.
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We consider a modified SIR model with a four dimensional system of ordinary differential equations
to consider the influence of a limited isolation capacity on the final epidemic size defined as the to-
tal number of individuals who experienced the disease at the end of an epidemic season. In many
countries, there has been a shortage of medical resources under the outbreak of SARS-COV-2. The
isolation requires a certain specific space with highly organized conditions to keep the infected indi-
viduals away from the other community members, so that there must be a certain capacity for it.
With its too small capacity, the isolation strategy may break down at a finite time on the way of
epidemic process.

We consider an epidemic dynamics in a season, which consists of susceptible, infective, isolated,
and recovered individuals. We assume the followings for our modeling:

e The total population size of the community is constant, ignoring any demographic change with
birth, death, and migration in a given epidemic season.

Isolated individuals cannot contact any other in the community.

Any isolated individual is not discharged in the season.

e The isolation capacity is limited. When the isolation reaches the capacity, it breaks down and
becomes incapable.

Following the last assumption, the epidemic dynamics may contain two phases: isolation effective
phase and isolation incapable phase. The isolation is available at the isolation effective phase, while
it is ceased at the isolation incapable phase since it has reached the capacity.

With the above assumptions, we consider the following model:
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Figure 1: gmax-dependence of the final epidemic size. Numerically drawn for (a) 8/o¢ = 0.8; (b)
B/oo = 1.25, commonly with So/N = 0.9 and /0 = 1.

_Jo Q < Qmax;
U(Q) B { 00 Q = Qmax

and the initial condition (S(0), I(0), @(0), R(0)) = (So, Iy, 0,0). The variables S, I, @, and R denote
the sizes of susceptible, infective, isolated, and recovered subpopulations respectively. The total
population size of the community is denoted by a positive constant N, and it is satisfied that S(¢) +
I(t) + Q(t) + R(t) = N for any t > 0. Every parameter is positive. The parameter v denotes
the recovery rate of infective individual. The disease transmission follows the frequency-dependent
infection force with the infection coefficient 5. Since the subpopulation size of free individuals is given
by N — @, the net incidence rate is given by 8ST/(N — Q). The piece-wise function o(Q) denotes
the isolation rate of infected individual. The parameter Q). represents the capacity of isolation.

The final epidemic size for the model is defined here as the proportion of recovered and isolated
individuals in the community at the end of epidemic dynamics. When the isolation never reaches
the capacity in any time, the final epidemic size is determined only by the isolation effective phase
and denoted by 25, = ¢, + ro, where r and g denote the proportions of isolated and recovered
individuals at the end of epidemic dynamics. However, when the isolation reaches the capacity in
a finite time due to its insufficient capacity, the final epidemic size is denoted by 2z = qmax + 75,
where gmax = Qmax/N, and L denote the proportion of recovered individuals at the end of epidemic
dynamics.

From our analysis, we derived the equation that determines the final epidemic size respectively
when the isolation never reaches the capacity at any time and when the isolation reaches the capacity
in a finite time, and show that the final epidemic size is monotonically decreasing in terms of the
isolation capacity when the isolation reaches the capacity in a finite time, as shown in Figure 1.
Further we derived a condition that determines a critical value of the isolation capacity g. below
which the isolation reaches the capacity in a finite time in the epidemic season. In such a case, the
final epidemic size necessarily becomes larger than that when the isolation capacity is beyond the
critical value. We also found that the final epidemic size could have a discontinuous jump at the
critical value of the isolation capacity under a condition about the epidemic dynamics, as indicated
by Figure 1. In such an epidemic dynamics, the isolation capacity below the critical value causes a
drastic increase in the final epidemic size, compared to that when the capacity is beyond the critical
value. Such a jump in the final epidemic size does not appear under the other condition. Then the
isolation capacity below the critical value could not result in much increase in the final epidemic size,
so that the existence of the critical value of the isolation capacity may be little observable.

The findings from this thesis could help us to understand the policy for prevention of a trans-
missible disease spread, the isolation of detected infectives is one of the possible choices. Our result
implies the necessity of a sufficient capacity of the isolation in order that the isolation works effective
to suppress the final epidemic size.
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1 Introduction

In this work, we are investigating the estimation
of social situation by using infection probabilities
in the case of disease outbreak in a certain com-
munity with members who have different level of
activities. We construct and analyze a mathemat-
ical model to consider the correlation between the
social activity and the infection risk in a commu-
nity. In our modeling, the infection risk is indexed
by the expected number of new cases. We take into
account the activity level and the sphere where the
activity takes place, according to the type of social

interaction held.

2 Assumptions

Let us assume a community which is composed
with two classes based on their activity level in
daily life: less-active and active. The less-active
class do not spend a significant portion of their
day outside their residential area, while the active
class members partake their activities both in the
residential area and public places out of their res-
idential area.

We here assume only two different phases
about the activity sphere: private and social
phases. Private phase is the activity sphere mainly
in the residential area with limited interactions
with the family members, neighbors, and house
staffs.

with arbitrary members of the community in the

At the social phase, the interactions are

public sphere which may include but not limited
to work, school, shops, public transportations, etc.

The less-active class members have activities
at only at the private phase, and the active class
members have those at both the private and social
phases. At the private phase, the epidemiological
contact between members of two classes is possi-
ble. In contrast, the epidemiological contact at the
social phase happens only between members of the
active class.

The likelihood of infection is assumed to be

different according to the interaction that takes
place at each phase, contributed by both the ac-
tive and less-active classes at the private phase and

solely by the active class at the social phase.

3 Modeling

Social

Phase

s P e
Less-active) P Fivate A ctive d@
class Phase —

The active class and less active class and their activity

sphere.

Ezxpected number of new cases for each class

Ei(a,q) = Bp(1—q)N;
Eu(ayq) = [1-{1-(1-a)8,}(1-a,)]aN.

E; : expected number of new cases in less-active class
E, : expected number of new cases in active class

Bp : infection probability at the private phase

Bs : infection probability at the social phase

q : ratio of active class in the population 0 < ¢ <1

N : total number of individuals in the population

gN : number of individuals belonging to the active class

(1 = ¢)N : number of individuals belonging to the less-
active class

« : proportion of time spent at the social phase by the
members of the active class (0 < a <1)

Total expected number of new cases
E(O{, Q) = El(Oﬁ, q) + Ea(a, Q)

Probability of infection at the private and social
phase

5}7 = ﬂP(O‘?(LN) = UP{(l - q)N + (1 - a)qN};
/85 = BS(Q7Q7N) = USan

op : infection coeflicients at the private phase

os : infection coefficients at the social phase

4 Analytical result

Dependence of the infection risk on the class

size



Theorem 1 The expected number E is monoton-
ically decreasing in terms of ¢ € (0,1) if and only
if a < a¢, where a. is given by the unique root of

the cubic equation

2
—3a® +5a% 4+ 2Aa — =0
a” + oo + e} o N
for a € (0,1), where
1 1
A= -1
O‘SN+0'pN

Otherwise, when o« > a., E has a unique extremal

minimum at ¢ = ¢* € (0,1) where ¢* is given by

1 6(1 —a)
3(1_a)a{—(A+a)+\/(A+a)2+USN }

for o€ (ae,1);

1/(03N)
1/(esN) +1/(opN)

for a=1.

1

Dependence of the infection risk on the ac-
tivity

Theorem 2 The expected number of new cases E
is monotonically decreasing in terms of a € (0,1)

if and only if ¢ < q., where q. is defined by

3 3 2
e : 2—|—A \/(2+A) GN (2)

Otherwise, when q¢ > q., E has a unique extremal

minimum at o = o« which is the unique root of

2A 2

1
40P +3(14+ )’ +=a—-———=0 (3
( q) . o NG (3)

for a €(0,1).

Corollary 1 The expected number of new cases E

cannot become minimum for a =0 or ¢ = 0.

Corollary 2 The expected number of new cases E
becomes minimum for « = 1 when q < q., while it

becomes minimum for ¢ = 1 when a < a.

&

Numerically obtained (a,g¢)-dependence of E(a,g) with
0N = 0.6, 0,N = 0.4, go = 0.372, and o = 0.42152.
Contour map (left) and 3-dimensional graph (right).

5 Management of infection
risk
Op
. “.“\ % ff*
Type 1l ;:;‘\ Type HI
(8] C\,\
q N
4o
- Type |
4 0 0. 10

Classification of the social structure indexed by («, ¢). Nu-
merically drawn with parameter values, same with those for

the previous numerical map and graph.

As every community is characterized by its own
a and ¢, we could classify communities according
to the restriction on the management of infection
risk into three types: Type I community for ¢ < g,
Type II for ¢ > ¢. and o < a, Type 111 for g > q.

and o > a..

e Type I community: the expected number of
new cases becomes smaller as the proportion

of the social phase gets larger.

e Type II community has a relatively large ac-
tive class with a sufficiently small proportion

of the social phase.

e Type III has a specific proportion of the so-

cial phase to minimize the infection risk

6 Conclusion

e There is a dependence of the infection risk for
the community upon the community struc-

ture and activity.

o Sufficiently large active class requires a cer-
tain duration at the social phase to minimize
the infection risk, while longer duration at
the social phase reduces the infection risk
for a community with sufficiently small ac-

tive class.

e When the active class has a sufficiently long
social phase, there is a certain size of active

class to minimize the infection risk.
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